

 $Head \ to \underline{www.savemyexams.com} \ for \ more \ awe some \ resources$

DP IB Maths: AA HL

2.3 Functions Toolkit

Contents

- * 2.3.1 Language of Functions
- * 2.3.2 Composite & Inverse Functions
- * 2.3.3 Symmetry of Functions
- * 2.3.4 Graphing Functions

Head to www.savemyexams.com for more awesome resources

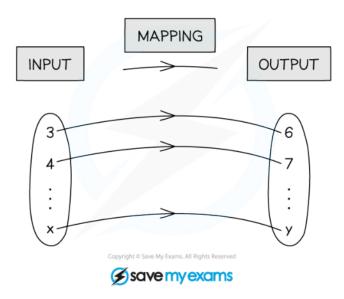
2.3.1 Language of Functions

Your notes

Language of Functions

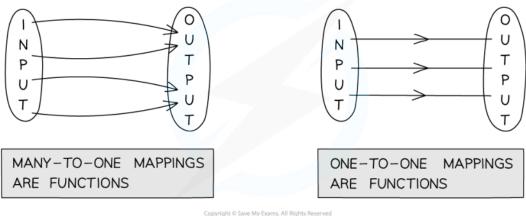
What is a mapping?

- A mapping transforms one set of values (inputs) into another set of values (outputs)
- Mappings can be:
 - One-to-one
 - Each input gets mapped to exactly one unique output
 - No two inputs are mapped to the same output
 - For example: A mapping that cubes the input
 - Many-to-one
 - Each input gets mapped to exactly one output
 - Multiple inputs can be mapped to the same output
 - For example: A mapping that squares the input
 - One-to-many
 - An input can be mapped to **more than one** output
 - No two inputs are mapped to the same output
 - For example: A mapping that gives the numbers which when squared equal the input
 - Many-to-many
 - An input can be mapped to **more than one** output
 - Multiple inputs can be mapped to the same output
 - For example: A mapping that gives the factors of the input



What is a function?

- A function is a mapping between two sets of numbers where each input gets mapped to exactly one output
 - The output does not need to be unique
- One-to-one and many-to-one mappings are functions
- A mapping is a function if its graph passes the vertical line test
 - Any vertical line will intersect with the graph at most once



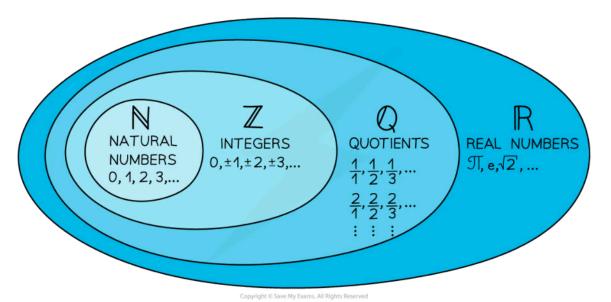
What notation is used for functions?

- Functions are denoted using letters (such as f, V, g, etc)
 - A function is followed by a variable in a bracket
 - This shows the input for the function
 - ullet The letter f is used most commonly for functions and will be used for the remainder of this revision note
- f(x) represents an expression for the value of the function $\,f\,$ when evaluated for the variable x
- Function notation gets rid of the need for words which makes it universal
 - f = 5 when x = 2 can simply be written as f(2) = 5

What are the domain and range of a function?

- The **domain** of a function is the set of values that are used as **inputs**
- A domain should be stated with a function
 - If a domain is not stated then it is assumed the domain is all the real values which would work as inputs for the function
 - Domains are expressed in terms of the input
- The range of a function is the set of values that are given as outputs
 - The range depends on the domain
 - Ranges are expressed in terms of the output

- $f(x) \ge 0$
- To graph a function we use the **inputs as the x-coordinates** and the **outputs as the y-coordinates**
 - f(2) = 5 corresponds to the coordinates (2, 5)
- Graphing the function can help you visualise the range
- Common sets of numbers have special symbols:
 - \blacksquare R represents all the real numbers that can be placed on a number line
 - $X \in \mathbb{R}$ means X is a real number
 - \mathbb{Q} represents all the rational numbers $\frac{a}{b}$ where a and b are integers and $b \neq 0$
 - **Z** represents all the integers (positive, negative and zero)
 - **Z**⁺ represents positive integers
 - N represents the natural numbers (0,1,2,3...)



What are piecewise functions?

• Piecewise functions are defined by different functions depending on which interval the input is in

$$E.g. f(x) = \begin{cases} x+1 & x \le 5 \\ 2x-4 & 5 < x < 10 \\ x^2 & 10 \le x \le 20 \end{cases}$$

- The region for the individual functions cannot overlap
- To evaluate a piecewise function for a particular value x=k
 - Find which interval includes k
 - Substitute X = k into the corresponding function

- The function may or may not be continuous at the ends of the intervals
 - In the example above the function is
 - continuous at x = 5 as 5 + 1 = 2(5) 4
 - not continuous at X = 10 as $2(10) 4 \neq 10^2$

Examiner Tip

- Questions may refer to "the largest possible domain"
 - This would usually be $x \in \mathbb{R}$ unless \mathbb{N} , \mathbb{Z} or \mathbb{Q} has already been stated
 - There are usualy some exceptions
 - e.g. square roots; $X \ge 0$ for a function involving \sqrt{X}
 - e.g. reciprocal functions; $x \neq 2$ for a function with denominator (x-2)

Worked example

For the function $f(x) = x^3 + 1$, $2 \le x \le 10$:

a) write down the value of f(7).

Substitute
$$x = 7$$

$$f(7) = 7^3 + 1$$

b) find the range of f(x).

Find the values of
$$x^3+1$$
 when $2 \le x \le 10$

2.3.2 Composite & Inverse Functions

Your notes

Composite Functions

What is a composite function?

- A composite function is where a function is applied to another function
- A composite function can be denoted
 - $f \circ g(X)$
 - fg(x)
 - f(g(x))
- The order matters
 - $(f \circ g)(x)$ means:
 - First apply g to x to get g(x)
 - Then apply f to the previous output to get f(g(x))
 - Always start with the function **closest to the variable**
 - $(f \circ g)(x)$ is not usually equal to $(g \circ f)(x)$

How do I find the domain and range of a composite function?

- lacktriangleright The domain of $f \circ g$ is the set of values of x...
 - which are a **subset** of the **domain of** g
 - which maps g to a value that is in the **domain of** f
- The range of $f \circ g$ is the set of values of X...
 - which are a **subset** of the **range of** *f*
 - found by applying f to the range of g
- lacksquare To find the **domain** and **range** of $f \circ g$
 - First find the range of g
 - Restrict these values to the values that are within the domain of f
 - The **domain** is the set of values that **produce the restricted range** of g
 - The range is the set of values that are produced using the restricted range of g as the domain for f
- For example: let f(x) = 2x + 1, $-5 \le x \le 5$ and $g(x) = \sqrt{x}$, $1 \le x \le 49$
 - The range of g is $1 \le g(x) \le 7$
 - Restricting this to fit the domain of f results in $1 \le g(x) \le 5$
 - The domain of $f \circ g$ is therefore $1 \le x \le 25$
 - These are the values of x which map to $1 \le g(x) \le 5$
 - The range of $f \circ g$ is therefore $3 \le (f \circ g)(x) \le 11$
 - These are the values which f maps $1 \le g(x) \le 5$ to

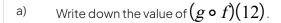
 $Head \, to \, \underline{www.savemyexams.com} \, for \, more \, awe some \, resources \,$

Examiner Tip

- Make sure you know what your GDC is capable of with regard to functions
 - You may be able to store individual functions and find composite functions and their values for particular inputs
 - You may be able to graph composite functions directly and so deduce their domain and range from the graph
- The link between the domains and ranges of a function and its inverse can act as a check for your solution
- ff(x) is not the same as $[f(x)]^2$

Worked example

Given $f(x) = \sqrt{x+4}$ and g(x) = 3 + 2x:



First apply function closest to input

$$(g \circ f)(12) = g(f(12))$$
 $f(12) = \sqrt{12+4} = \sqrt{16} = 4$
 $g(4) = 3 + 2(4) = 11$
 $(g \circ f)(12) = 11$

b) Write down an expression for $(f \circ g)(x)$.

First apply function closest to input
$$(f \circ g)(x) = f(g(x))$$

$$= f(3+2x)$$

$$= \sqrt{3+2x+4}$$

$$(f \circ g)(x) = \sqrt{7+2x}$$

c) Write down an expression for $(g \circ g)(x)$.

$$(g \circ g)(x) = g(g(x))$$

= $g(3+2x)$
= $3+2(3+2x)$
= $3+6+4x$
 $(g \circ g)(x) = 9+4x$

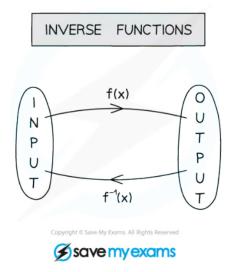
 $Head \, to \, \underline{www.savemyexams.com} \, for \, more \, awe some \, resources \,$

Inverse Functions

What is an inverse function?

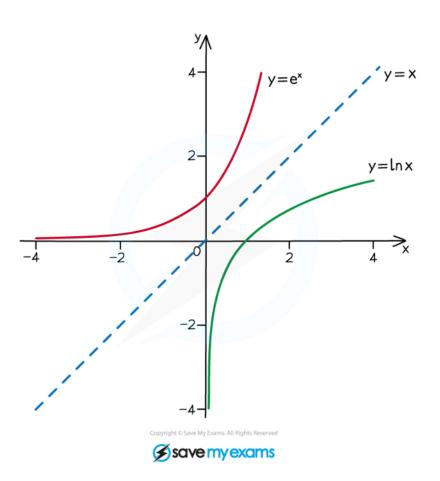
- Only one-to-one functions have inverses
- A function has an inverse if its graph passes the horizontal line test
 - Any horizontal line will intersect with the graph at most once
- The identity function id maps each value to itself
 - $\bullet \quad \mathrm{id}(X) = X$
- If $f \circ g$ and $g \circ f$ have the same effect as the identity function then f and g are inverses
- ullet Given a function f(x) we denote the **inverse function** as $f^{-1}(x)$
- An inverse function reverses the effect of a function
 - $f(2) = 5 \text{ means } f^{-1}(5) = 2$
- Inverse functions are used to solve equations
 - The solution of f(x) = 5 is $x = f^{-1}(5)$
- A composite function made of f and f^{-1} has the same effect as the identity function

$$(f \circ f^{-1})(x) = (f^{-1} \circ f)(x) = x$$



What are the connections between a function and its inverse function?

- The domain of a function becomes the range of its inverse
- The range of a function becomes the domain of its inverse
- The graph of $y = f^{-1}(x)$ is a **reflection** of the graph y = f(x) in the line y = x
 - Therefore solutions to f(x) = x or $f^{-1}(x) = x$ will also be solutions to $f(x) = f^{-1}(x)$
 - There could be other solutions to $f(x) = f^{-1}(x)$ that don't lie on the line y = x



How do I find the inverse of a function?

- STEP 1: Swap the x and y in y = f(x)
 - If $y = f^{-1}(x)$ then x = f(y)
- STEP 2: Rearrange x = f(y) to make y the subject
- Note this can be done in any order
 - Rearrange y = f(x) to make x the subject
 - Swap X and Y

Can many-to-one functions ever have inverses?

- You can **restrict the domain** of a many-to-one function so that it has an inverse
- Choose a subset of the domain where the function is one-to-one
 - The inverse will be determined by the restricted domain
 - Note that a many-to-one function can **only** have an inverse if its domain is restricted first
- For quadratics use the vertex as the upper or lower bound for the restricted domain
 - For $f(x) = x^2$ restrict the domain so 0 is either the maximum or minimum value
 - For example: $X \ge 0$ or $X \le 0$

- For $f(x) = a(x-h)^2 + k$ restrict the domain so h is either the maximum or minimum value
 - For example: $X \ge h$ or $X \le h$
- For trigonometric functions use part of a cycle as the restricted domain
 - For $f(x) = \sin x$ restrict the domain to half a cycle between a maximum and a minimum
 - For example: $-\frac{\pi}{2} \le x \le \frac{\pi}{2}$
 - For $f(x) = \cos x$ restrict the domain to half a cycle between maximum and a minimum
 - For example: $0 \le x \le \pi$
 - For $f(x) = \tan x$ restrict the domain to one cycle between two asymptotes
 - For example: $-\frac{\pi}{2} < x < \frac{\pi}{2}$

How do I find the inverse function after restricting the domain?

- The range of the inverse is the same as the restricted domain of the original function
- The inverse function is determined by the restricted domain
 - Restricting the domain differently will change the inverse function
- Use the range of the inverse to help find the inverse function
 - Restricting the domain of $f(x) = x^2$ to $x \ge 0$ means the range of the inverse is $f^{-1}(x) \ge 0$
 - Therefore $f^{-1}(x) = \sqrt{x}$
 - Restricting the domain of $f(x) = x^2$ to $x \le 0$ means the range of the inverse is $f^{-1}(x) \le 0$
 - Therefore $f^{-1}(x) = -\sqrt{x}$

Examiner Tip

- Remember that an inverse function is a reflection of the original function in the line y = x
 - Use your GDC to plot the function and its inverse on the same graph to visually check this
- $f^{-1}(x)$ is not the same as $\frac{1}{f(x)}$

Worked example

The function $f(x) = (x-2)^2 + 5$, $x \le m$ has an inverse.

a) Write down the largest possible value of m.

Sketch
$$y = f(x)$$

The graph is one-to-one
for $x \le 2$

$$m = 2$$

b) Find the inverse of f(x).

Let
$$y=f^{-1}(x)$$
 and rearrange $x=f(y)$
 $x=(y-2)^2+5$
 $x-5=(y-2)^2$
 $\pm \sqrt{x-5}=y-2$
 $2\pm \sqrt{x-5}=y$
Range of f^{-1} is the domain of $f^{-1}(x) \le 2$: $y=2-\sqrt{x-5}$
 $f^{-1}(x)=2-\sqrt{x-5}$

c) Find the domain of $f^{-1}(x)$.

SaveMyExams

Head to www.savemyexams.com for more awesome resources

Domain of f^{-1} is the range of fSketch y=f(x) to see range For $x \le 2$, $f(x) \ge 5$ (2.5) Domain of f^{-1} : $x \ge 5$

d) Find the value of k such that f(k) = 9.

Use inverse
$$f(a) = b \iff q = f^{-1}(b)$$

 $k = f^{-1}(9) = 2 - \sqrt{9 - 5}$
 $k = 0$

2.3.3 Symmetry of Functions

Your notes

Odd & Even Functions

What are odd functions?

- A function f(x) is called **odd** if
 - f(-x) = -f(x) for all values of x
- Examples of odd functions include:
 - Power functions with **odd powers**: X^{2n+1} where $n \in \mathbb{Z}$
 - For example: $(-x)^3 = -x^3$
 - Some trig functions: sin X, cosec X, tan X, cot X
 - For example: $\sin(-x) = -\sin x$
 - Linear combinations of odd functions
 - For example: $f(x) = 3x^5 4\sin x + \frac{6}{x}$

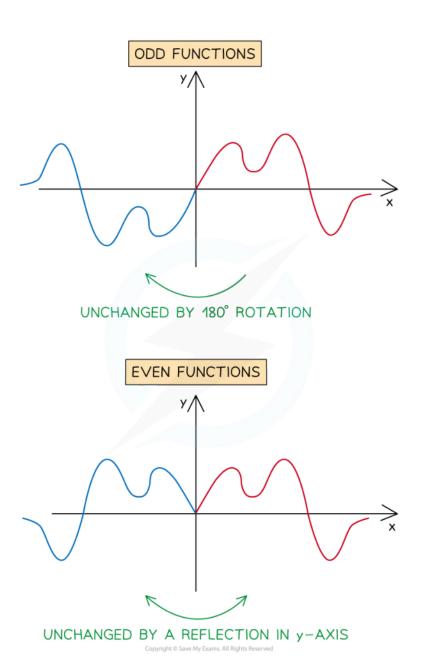
What are even functions?

- A function f(x) is called **even** if
 - f(-x) = f(x) for all values of X
- Examples of even functions include:
 - $\qquad \text{Power functions with } \mathbf{even} \, \mathbf{powers} : \mathbf{X}^{2n} \, \, \mathbf{where} \, \, n \in \mathbb{Z}$
 - For example: $(-x)^4 = x^4$
 - Some trig functions: COSX, SecX
 - For example: $\cos(-x) = \cos x$
 - Modulus function: |X|
 - Linear combinations of even functions
 - For example: $f(x) = 7x^6 + 3|x| 8\cos x$

What are the symmetries of graphs of odd & even functions?

- The graph of an odd function has rotational symmetry
 - The graph is unchanged by a **180° rotation** about the origin
- The graph of an even function has reflective symmetry
 - The graph is unchanged by a **reflection** in the **y-axis**

 $Head \, to \, \underline{www.savemyexams.com} \, for \, more \, awe some \, resources \,$



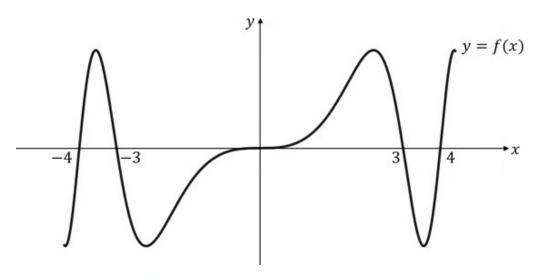
Examiner Tip

- Turn your GDC upside down for a quick visual check for an odd function!
 - Ignoring axes, etc, if the graph looks exactly the same both ways, it's odd

SaveMyExams

Worked example

The graph y = f(x) is shown below. State, with a reason, whether the function f is odd, even or neither.



f is an odd function as its graph has rotational symmetry - it is unchanged by a 180° rotation about the origin.

b) Use algebra to show that $g(x) = x^3 \sin(x) + 5\cos(x^5)$ is an even function.

g is even if
$$g(-x) = g(x)$$
 for all x
 $g(-x) = (-x)^3 \sin(-x) + 5\cos((-x)^5)$
 $= (-x^3)(-\sin(x)) + 5\cos(-x^5)$ x^3 , x^5 , sinx are odd
 $= x^3 \sin(x) + 5\cos(x^5)$ $\cos x$ is even
 $= g(x)$
g is even as $g(-x) = g(x)$ for all x

Periodic Functions

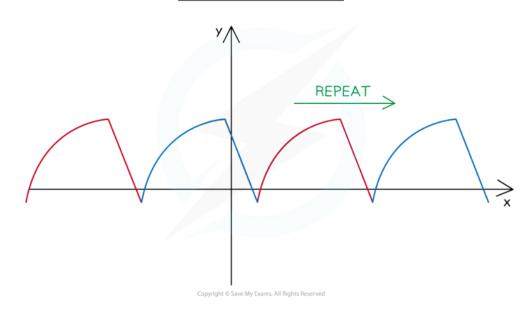
What are periodic functions?

- A function f(x) is called **periodic**, with **period k**, if
 - f(x+k) = f(x) for all values of X
- Examples of periodic functions include:
 - $\sin x \& \cos x$: The period is 2π or 360°
 - tan x: The period is π or 180°
 - Linear combinations of periodic functions with the same period
 - For example: $f(x) = 2\sin(3x) 5\cos(3x + 2)$

What are the symmetries of graphs of periodic functions?

- The graph of a **periodic** function has **translational symmetry**
 - The graph is unchanged by **translations** that are **integer multiples of** $\begin{pmatrix} k \\ 0 \end{pmatrix}$
 - The means that the graph appears to **repeat** the same section (cycle) infinitely

PERIODIC FUNCTIONS



SaveMyExams

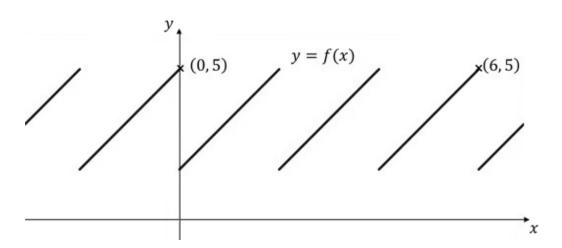
Head to www.savemyexams.com for more awesome resources

Examiner Tip

- There may be several intersections between the graph of a periodic function and another function
 - i.e. Equations may have several solutions so only answers within a certain range of *X*-values may be required
 - e.g. Solve $\tan x = \sqrt{3}$ for $0^{\circ} \le x \le 360^{\circ}$
 - $x = 60^{\circ}, 240^{\circ}$
 - Alternatively you may have to write **all** solutions in a general form
 - e.g. $x = 60(3k+1)^{\circ}$, $k = 0, \pm 1, \pm 2, ...$

Worked example

The graph y = f(x) is shown below. Given that f is periodic, write down the period.



Period is the length of the interval of a single cycle Between x=0 and x=6 there are 3 cycles Period = $\frac{6-0}{3}$

Period = 2

Self-Inverse Functions

What are self-inverse functions?

•
$$(f \circ f)(x) = X$$
 for all values of X

$$f^{-1}(x) = f(x)$$

Examples of self-inverse functions include:

• Identity function: f(x) = x

Reciprocal function: $f(x) = \frac{1}{x}$

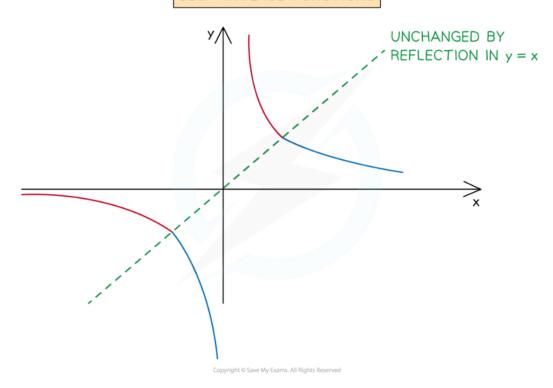
• Linear functions with a gradient of -1: f(x) = -x + c

What are the symmetries of graphs of self-inverse functions?

• The graph of a **self-inverse** function has **reflective symmetry**

• The graph is unchanged by a **reflection** in the line y = x

SELF-INVERSE FUNCTIONS



Examiner Tip

- If your expression for $f^{-1}(x)$ is not the same as the expression for f(x) you can check their equivalence by plotting both on your GDC
 - If equivalent the graphs will sit on top of one another and appear as one
 - This will indicate if you have made an error in your algebra, before trying to simplify/rewrite to make the two expressions identical
- It is sometimes easier to consider self inverse functions geometrically rather than algebraically

Worked example

Use algebra to show the function defined by $f(x) = \frac{7x-5}{x-7}$, $x \ne 7$ is self-inverse.

Method 1:
$$f'(x)$$

Let $y = f'(x)$ so $x = f(y)$

$$x = \frac{1}{4}y - 5$$

$$(y - 7)x = 7y - 5$$

$$xy - 7x = 7y - 5$$

$$xy - 7y = 7x - 5$$

$$(x - 7)y = 7x - 5$$

$$y = \frac{7}{x - 7}$$

Isolate y on one side
$$(x - 7)y = 7x - 5$$

$$y = \frac{7}{x - 7}$$

Isolate y on one side
$$(x - 7)y = 7x - 5$$

$$y = \frac{7x - 5}{x - 7}$$

Isolate y on one side
$$(x - 7)y = 7x - 5$$

$$y = \frac{7x - 5}{x - 7}$$

Isolate y on one side
$$(x - 7)y = 7x - 5$$

$$y = \frac{49x - 35 - 5x + 35}{7x - 5 - 7x + 49}$$

$$= \frac{44x}{44}$$

If of $f(x)$ = x

If is self-inverse

If is self-inverse

2.3.4 Graphing Functions

Your notes

Graphing Functions

How do I graph the function y = f(x)?

- A point (a, b) lies on the graph y = f(x) if f(a) = b
- The horizontal axis is used for the domain
- The vertical axis is used for the range
- You will be able to graph some functions by hand
- For some functions you will need to use your GDC
- You might be asked to graph the **sum** or **difference** of two functions
 - Use your GDC to graph y = f(x) + g(x) or y = f(x) g(x)
 - Just type the functions into the graphing mode

What is the difference between "draw" and "sketch"?

- If asked to sketch you should:
 - Show the general shape
 - Label any key points such as the intersections with the axes
 - Label the axes
- If asked to draw you should:
 - Use a pencil and ruler
 - Draw to scale
 - Plot any points accurately
 - Join points with a straight line or smooth curve
 - Label any key points such as the intersections with the axes
 - Label the axes

How can my GDC help me sketch/draw a graph?

- You use your GDC to plot the graph
 - Check the scales on the graph to make sure you see the full shape
- Use your GDC to find any key points
- Use your GDC to check specific points to help you plot the graph

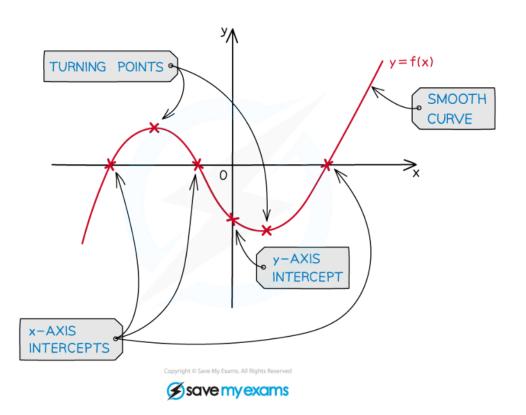
Head to www.savemyexams.com for more awesome resources

Key Features of Graphs

What are the key features of graphs?

- You should be familiar with the following key features and know how to use your GDC to find them
- Local minimums/maximums
 - These are points where the graph has a minimum/maximum for a small region
 - They are also called **turning points**
 - This is where the graph changes its direction between upwards and downwards directions
 - A graph can have multiple local minimums/maximums
 - A local minimum/maximum is not necessarily the minimum/maximum of the whole graph
 - This would be called the global minimum/maximum
 - For quadratic graphs the minimum/maximum is called the **vertex**
- Intercepts
 - y intercepts are where the graph crosses the y-axis
 - At these points x = 0
 - x intercepts are where the graph crosses the x-axis
 - At these points y = 0
 - These points are also called the zeros of the function or roots of the equation
- Symmetry
 - Some graphs have lines of symmetry
 - A quadratic will have a vertical line of symmetry
- Asymptotes
 - These are lines which the graph will get closer to but not cross
 - These can be horizontal or vertical
 - Exponential graphs have horizontal asymptotes
 - Graphs of variables which vary inversely can have vertical and horizontal asymptotes

Head to www.savemyexams.com for more awesome resources



Examiner Tip

- Most GDC makes/models will not plot/show asymptotes just from inputting a function
 - Add the asymptotes as additional graphs for your GDC to plot
 - You can then check the equations of your asymptotes visually
 - You may have to zoom in or change the viewing window options to confirm an asymptote
- Even if using your GDC to plot graphs and solve problems sketching them as part of your working is good exam technique
 - Label the key features of the graph and anything else relevant to the question on your sketch

Worked example

Two functions are defined by

$$f(x) = x^2 - 4x - 5$$
 and $g(x) = 2 + \frac{1}{x+1}$.

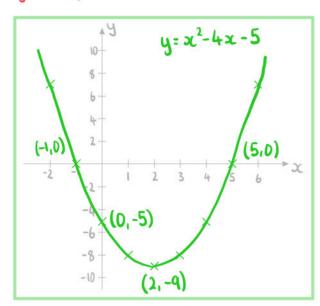
Draw the graph y = f(x). a)

Draw means accurately

Use GDC to find vertex, roots and y-intercepts

Roots =
$$(-1, 0)$$
 and $(5, 0)$

y-intercept =
$$(0, -5)$$



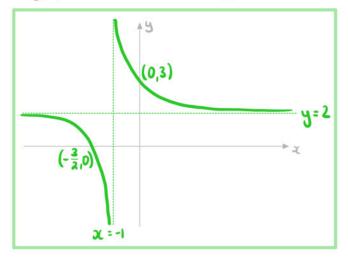
Sketch the graph y = g(x). b)

Head to www.savemyexams.com for more awesome resources

Sketch means rough but showing key points

Use GDC to find x and y-intercepts and asymptotes x-intercept = $(-\frac{3}{2}, 0)$ y-intercept = (0,3)

Asymptotes : x = -1 and y = 2

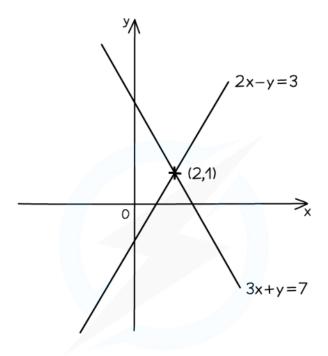


Your notes

Intersecting Graphs

How do I find where two graphs intersect?

- Plot both graphs on your GDC
- Use the intersect function to find the intersections
- Check if there is more than one point of intersection



- · LINES INTERSECT AT (2,1)
- SOLVING 2x-y=3 AND 3x+y=7 SIMULTANEOUSLY IS x=2, y=1

Copyright © Save My Exams. All Rights Reserved

How can I use graphs to solve equations?

- One method to solve equations is to use graphs
- To solve f(x) = a
 - Plot the two graphs y = f(x) and y = a on your GDC
 - Find the points of intersections
 - The x-coordinates are the solutions of the equation
- To solve <math>f(x) = g(x)

 $Head \, to \, \underline{www.savemyexams.com} \, for \, more \, awe some \, resources \,$

- Plot the two graphs y = f(x) and y = g(x) on your GDC
- Find the points of intersections
- The x-coordinates are the solutions of the equation
- Using graphs makes it easier to see **how many solutions** an equation will have

Examiner Tip

- You can use graphs to solve equations
 - Questions will not necessarily ask for a drawing/sketch or make reference to graphs
 - Use your GDC to plot the equations and find the intersections between the graphs

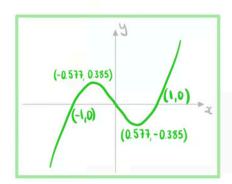
Worked example

Two functions are defined by

$$f(x) = x^3 - x$$
 and $g(x) = \frac{4}{x}$.

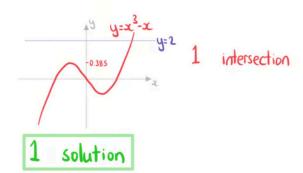
a) Sketch the graph y = f(x).

Use GDC to find max, min, intercepts



b) Write down the number of real solutions to the equation $x^3 - x = 2$.

Identify the number of intersections between $y=x^3-x$ and y=2

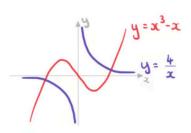


c) Find the coordinates of the points where y = f(x) and y = g(x) intersect.

SaveMyExams

Head to www.savemyexams.com for more awesome resources

Use GDC to sketch both graphs



d) Write down the solutions to the equation $x^3 - x = \frac{4}{x}$.

Solutions to $x^3 - x = \frac{4}{x}$ are the x coordinates of the points of intersection.

$$x = -1.60$$
 and $x = 1.60$